Speedy-Splat: Fast 3D Gaussian Splatting
with Sparse Pixels and Sparse Primitives
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(a) 3D Gaussian Splatting (b) ShugBox (c) AcculTile

Our localization algorithms reduce the number of Gaussians per pixel.

(a) 3D Gaussian Splatting overestimates Gaussian-to-tile intersections.

(b) Our SnugBox method finds the axis-aligned tight bounding box of the
Gaussian and corresponding rectangular tile extent in constant time.

(c) Our AccuTile method extends SnugBox to quickly compute exact
Gaussian-to-tile intersections.

Speedy—Splat (Ours) 3D Gaussian Splatting

Speedy—Splat renders over 6 views in the time it takes 3D Gaussian Splatting to render 1

When compared to original 3D-GS, Speedy-Splat achieves

How can we accelerate the rendering speed ; VES
6.5x FPS, 10x compression, and 45% faster training.

of 3D Gaussian Splatting (3D-GS) by over 6 X?

Rendering speed is primarily determined by two factors: Our lossless methods boost FPS by 2x for free.

1. The number of Gaussians allocated to each pixel, and SnugBox and AccuTile are lossless - they do not change the rendered image.

2. The total number of Gaussians in the scene. . Method FPST Comp. 1 Train 1 PSNR 1 SSIM 1 LPIPS |
Pruning

] . 3D-GS 1.00X 1.00X 1.00X 27.55 0.814 0.222

Our pruning method reduces the total number of Gaussians by ~90%.
We compute a pruning score U; for each Gaussian G, as a second order EAGLES 1.51x 3.68X 1.37X 26.94 0.800 0.250
approximation of the L, reconstruction error: ELMGS 2.69% 5.00% - 27.00 0.779 0.286
- 2 T 2 PUP 2.55% 8.65X% - 26.83 0.792 0.268
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Mini-Splat 3.20% 6.84X 1.26X 27.34 0.822 0.217
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where P, is the set of all training poses, I5(¢) is the rendered view for pose ¢, (Lossless) 1.99% 0-99% 110 2757 0814 0221
and g; is the value of the projected Gaussian in Ig(¢). Ours “ 1 0 6  aex o on 0985 0 906
‘ (Full) : : : . . .
y We use this score to prune the scene during training via two modalities:
. . 1. Soft Pruning, performed during the densification stage, and Acknowledgements
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